

Additional Submissions

309

310

FAX Message Conversion & Searching

Henry S. Baird
Bell Laboratories
Lucent Technologies, Inc.
700 Mountain Ave, Room 2C-322
Murray Hill, NJ 07974
hsb@bell-labs.com

Abstract

FAX message streams pose serious challenges to the current generation of docu-
ment image analysis systems. I review recent work at Bell Laboratories on automatic
identification of the orientation (upside-down, landscape, etc) and language of FAXed
pages of text: interestingly, there are advantages in considering these problems simul-
taneously. Also, I report on advances in classifier design that may permit FAXes to
‘cook’ — improve in recognition accuracy indefinitely — as they wait in multi-media
mailboxes. I'll touch on some early engineering results in word—, phrase—, and address—
spotting in highly degraded FAX images. If time permits, I may comment on some
long-range implications for research in document image analysis of the rapid growth in
the multi-media messaging industry. (Joint work with Dar-Shyang Lee, Craig Nohl,
and Tin Kam Ho.)

311

Document Understanding Products and
Research at Mitek Systems, Inc.

Gerald I. Farmer
Mitek Systems, Inc.
10070 Carroll Canyon Rd.
San Diego, CA 92131
farmer@miteksys.com
http://www.miteksys.com

Abstract

Mitek Systems, Inc. is an OCR/ICR software development company, concentrating
in hand-printed character recognition and financial document processing. Mitek is the
industry leader in the application of neural networks for hand-printed character
recognition. In addition to several character recognition and related products we have
ongoing research in areas of document image understanding.

Mitek is best known for its high-accuracy hand-printed character recognition engine,
QuickStrokes. Two of our products, Premier Forms Processor and NiF use QuickStrokes
for character recognition. PFP is a Windows based end-user system for forms processing.
NiF automatically routes incoming faxes by recognizing the name of the recipient on the
cover sheet. Mitek also offers QuickFrame, a neural network based page segmentation
system that automatically separates document pages into regions by information type (i.e.
machine-printed text, hand-printed text, photographs, drawings, etc.).

Mitek has several ongoing research projects. We continue to enhance the functionality
of our QuickStrokes system. In addition we have an Arabic OCR research project that
has led to the development of a commercial OCR system for recognizing Arabic machine
printed text. We are nearing completion of a map image understanding project to develop
a method for extracting text, symbols, roadways/rivers and gridlines from general map
images. Currently in development is a language-independent OCR system called LITRE.
To date, LITRE has been configured to recognize English, Thai, Lao, Burmese and
Vietnamese languages. In another research project we are developing a system to
automatically verify handwritten signatures.

312

Synthetic Training Data for Character
Recognition Neural Networks

Michal P. Prussak, Laurence E. Bernstein,
Ronald A. Linyard, J. Shane McRoberts,
Sheena W. Rice, Brian C. Sparks, Bart Rothwell
Mitek Systems, Inc.

10070 Carroll Canyon Rd.

San Diego, CA 92131
http://www.miteksys.com
e-mail: mpp@miteksys.com

Abstract

Training of neural networks requires a large set of
training data to obtain good generalization. Real data
yields the best results, but often requires a significant
effort to obtain. Synthetic training data can offer a
good substitute for training. We show how to apply
Baird’s image defect model to generate synthetic
training data for machine printed characters. We will
show how synthetic data can be used to construct
character classifiers that use some of the font metrics to
aid in recognition. Finally we will show that in the
LITRE text recognition system, synthetically trained
recognition classifiers perform better than a classifier
trained with real data.

1 Introduction

One of the methods used for character recognition are
neural networks [1], [2], [3], [4], [S]. Neural networks
can be trained to recognize a set of characters by
repeated presentation of example characters during the
training phase. Accuracy of neural network
classification depends highly on the data presented
during training. The set of training data for the neural
network should be as large as possible, and it should be
representative of the data to be classified by the
network. Other types of classifiers can also benefit
from a similar set of training data.

One way to collect training data for character
recognition is to take the documents from which
characters will be classified, extract images of
characters and assign to each image the identity (tag) of
the character it contains. This type of data is referred to
as the real data. The real data is desirable because it is
representative of the data to be classified, but it requires
a significant manual effort to collect. Moreover, rarely

313

occurring characters are difficult to collect in
sufficiently large quantities. Lastly, as this is largely a
manual process, it is prone to errors in tagging,
sometimes resulting in character images with incorrect
tags that can decrease the recognition accuracy. The
value and cost of real character training sets is
illustrated by the availability and prices of character
databases from CEDAR [6], NIST [7], University of
Washington [8], [9] and University of Seoul [10].

Another way to collect training data is to generate a
page containing the desired characters, print it out and
then scan it and extract the training characters from the
scanned image. The page that is printed out can also be
photocopied multiple times to simulate image defects,
as found in real documents. The scanned image can
then be automatically or semi-automatically processed
to extract and tag character images, as the positions and
identities of the characters are known. This type of data
is referred to as the artificial data. Artificial data is
easier to collect than real data, but may not be as
representative as real data. Distortions found in
artificial data will frequently not match the distortions
found in real data.

Finally, training data can by synthetically generated.
This can be done by rendering a perfect image of a
character using a chosen font. This character can then
be synthetically distorted using several possible
distortion techniques. The distorted character can then
be used for training a network. Data generated this way
is referred to as the synmthetic data. Synthetic data is
generated completely automatically, so is easier to
collect than both real and artificial data. Synthetic data
might not be as representative as real data, as the
distortions applied probably do not cover all possible
real distortions.

Baird [11] has applied his defect model to create an
English character classifier and reports a successful
Tibetan classifier created with synthetic data. Bokser
[12] reports an unsuccessful attempt to create a Cyrillic
classifier with synthetic data - in this case, however, the
data had not been synthetically distorted and ideal
character images were used. Several attempts were
made to measure the quality of this defect model [13],
[14] leaning to the conclusion that it does not model the
real defects adequately.

We will show that this defect model is adequate for
the purpose of construction of character classifiers. We
will show that in an experiment a synthetically
constructed classifier outperformed a comparable
classifier constructed with real data. In this experiment,
the real data classifier was trained with about 250000
characters while the synthetic data classifier was trained
with 940000 characters. This imbalance in the amount
of training data favors the synthetic data classifier.
However, the real data for training was expensive to
obtain and all available data was used. The synthetic
data was easy to generate and a manageable amount of
that data was used for training. The ease of creation of
synthetic data is its inherent advantage over real data.
Therefore to test the applicability of synthetic data for
training character classifiers we have generated as
many character images as we could reasonably handle.

Section 2 describes an application of Baird’s
distortion model [11], [15] to synthetically degrade
character images for training a neural network. Section
3 describes how synthetically generated data can be
used to implement a more advanced character classifier,
by adding several font metrics during training and
multiple character glyphs. Section 4 shows that the
networks trained with synthetic data result in higher
overall accuracy in an OCR system, LITRE [2],
currently under development by Mitek Systems.

2 Synthetic Character Image Distortions

We have chosen Baird’s [11] image defect model as the
basis for creation of synthetic data. [11] provides an
excellent overview of this model and only a brief
summary of is provided here. We also describe our
modifications and parameters we have chosen for the
distortions.

R R R R

Figure 1. Examples of distorted character images.

We have applied the following distortions: boldness,
skew, width, height, resolution, jitter, blur. For each of

314

the distortions a range of distortion amount was
selected, as well as the percentage frequency it should
be applied. During the process of distorting the images,
a set of distortions was first randomly chosen for each
image, according to the desired frequency of each
distortion. Next, for each distortion, a random
distortion amount was selected linearly from the given
range and the distortions were applied to the image.
The distortions were applied cumulatively, in the order
given above. The distorted images were generated from
TrueType fonts at 300 PPI.

2.1 Boldness Distortion

R R

Figure 2. Boldness distortion examples.

The boldness distortion is not among the distortions
described by Baird [11]. This distortion was applied by
selecting the appropriate weight for the font in the
Microsoft Windows SDK CreateFontindirect function.
This distortion was used to increase variety of
characters used for training. Boldness amount was
applied randomly from 100 to 900, where 400
represents the normal weight, 100 is the thinnest weight
and 900 is the heaviest weight. Many fonts only had
two boldness values. For these fonts only two types of
characters - regular and bold - could be generated.
Boldness was applied to all characters.

2.2 Skew Distortion

R R

Figure 3. Skew distortion examples.

The skew distortion rotates the character image by a
selected skew angle amount, as described in [11]. The
skew distortion was applied by selecting an appropriate
escapement parameter in the Microsoft Windows SDK
CreateFontIndirect function. As a result, characters
were rendered with the desired skew. A randomly
selected skew between -2 and 2 degrees was applied to
all images.

2.3 Width Distortion

R R

Figure 4. Width distortion examples.

The width distortion stretches the character horizontally
by a selected amount, as described in [11]. This
distortion was applied to all images with the distortion
amount randomly selected between 0.9 and 1.1. A
distortion amount of 1.0 represents a non-distorted
image.

2.4 Height Distortion

R R

Figure 5. Height distortion examples.

The height distortion stretches the character vertically
by a selected amount, as described in [11]. This
distortion was applied to all images with the distortion
amount randomly selected between 0.9 and 1.1. A
distortion amount of 1.0 represents a non-distorted
image.

2.5 Resolution Distortion

R R

Figure 6. Resolution distortion examples.

The resolution distortion introduces spatial quantization
effects to the character image, as described in [11]. This
distortion was applied by scaling the images down by a
selected amount and then scaling them up to the
original size. 25% of the images had resolution
distortions applied to them, with the randomly selected
distortion amount between 0.5 and 1.0. The amount of
1.0 represents no distortion, while distortion of 0.5
represents scaling the image down by a factor of two
and then scaling it back up by a factor of two. As
described in [11], selecting small font sizes also
introduced resolution distortion effect. During
generation of training data, a range of point sizes from
6 to 14 points was selected for each font.

315

2.6 Jitter Distortion

Figure 7. Jitter distortion examples.

The jitter distortion attempts to simulate the effect of
slightly misaligned photo-receptors in the scanner, as
described in [11]. In jitter distortion, a random amount
of jitter distortion is chosen for each pixel in the
selected range, separately for horizontal and vertical
amount. The new position of the pixel is then
calculated. As the new pixel coordinates are not
integers, the pixel is mapped into a gray-scale bitmap
by computing a proportion of four pixels occupied at
that bitmap. Next, the value of each gray-scale pixel is
incremented by this proportion. For example, if the new
pixel coordinates are (3.5, 5.5), this pixel is split
equally between four gray-scale pixels: (3, 5), (3, 6), (4,
5), (4, 6) - each of these pixels will have its value
incremented by 0.25. After jitter has been applied to all
pixels, pixels in the gray-scale bitmap with a value less
than 0.5 are set to white and remaining pixels are set to
black. Jitter was applied to 50% of the images with a
randomly selected distortion amount in the range of 0
to 1. A jitter of 0 represents no distortion, while with
jitter of 1, each pixel is allowed to move up to 1 pixel
away.

2.7 Blur Distortion

R R

Figure 8. Blur distortion examples.

The blur distortion models the point-spread (or,
impulse response) function of the combined printing
and imaging process by applying a circularly
symmetric Gaussian filter with a standard error of blur,
as described in [11]. Blur distortion was applied to 25%
of the images with the distortion amount randomly
selected between 1.0 and 3.0. A blur amount of 1.0
represents no distortion.

3 Advanced Features of Synthetic Data

The defect model allows an easy creation of a training
set whose distortions approach real defects. This way
the utility of real training data can be approached.
However, the process of synthesis permits the creation

of a more advanced training set than could be created
with real data. During the rendering of the characters
their font metrics are known and can be stored with
each character image. We have stored the baseline and
upper and lower case height for each character image.
Then, if the classifier can use these font metrics to aid
in classification, higher recognition accuracy can be
achieved. In addition images of glyphs other than single
characters can be synthesized - either multiple
characters or portions of characters. Synthesis of such
glyphs allows the creation of a classifier to recognize
them. When such glyphs are incorrectly generated by
the segmentation procedure, they can still be correctly
recognized by the classifier.

3.1 Font Metric Training Parameters

During the synthesis of character images, the font
metrics of the characters are known. These font metrics
can be included with each synthesized character image
to be used for training. Such font metrics include the
height of upper and lower case characters, and the
baseline of the character. These parameters can also be
computed by the segmentation routines during
recognition and provided to the classifier to achieve
higher recognition accuracy. For example, the baseline
parameter can help distinguish commas from quote
marks, which could be indistinguishable in many fonts.
Similarly, the uppercase and lowercase height
parameter can help distinguish characters which have a
similar shape in upper and lower case, like ‘s’ or ‘o’.
The neural network system used in LITRE [2] can use
the baseline and upper and lower case height
parameters computed by its segmentation module.

3.2 Non-Character Glyph Synthesis

The process of synthesizing distorted character images
also allows the synthesis of glyphs other than single
characters. Such glyphs can be used to recognize
missegmented characters. For example, character pairs
such as ‘fi’ or ‘ff’ are frequently typeset as a single
ligature and are difficult to segment into separate
characters. There may be other pairs of narrow
characters which, if touching, can be difficult for the
segmentation system to separate, for example ‘el’, ‘II’.
Being able to recognize such glyphs will decrease the
amount of errors caused by incorrect segmentation,
rather than incorrect recognition. This is important in
current OCR systems, as segmentation errors can
account for the majority of the errors [16].

The ability to construct multi-character glyphs is
even more important in some non-Latin scripts, where
characters can be arranged in a way difficult to segment
by the segmentation system. For example, Burmese has
a character that can contain one or more characters
inside it [2]. Rather than attempt to segment such

316

characters, it may be easier to synthesize all possible
combinations of such characters and train a classifier to
recognize them.

Multiple character glyphs introduce a new parameter
in the synthesis system, called squashing. Squashing
determines how closely should two characters be
placed to each other. This parameter is used to vary the
distance between the neighboring characters. During
testing we have found that rendering of pairs of
characters typically leaves a gap between them.
However, character pair recognition is important when
the characters are touching. Therefore we have selected
0.0 squashing in our experiments to ensure that in pairs
of characters the characters are touching. A squashing
of 1.0 would indicate the normal distance between
characters.

The synthesis of partial character glyphs would also
be useful in certain situations. For example, in a
language with a variety of possible diacritical marks
over a variety of characters, it may be desirable to
segment the main character apart from its diacritical
mark and recognize them separately. To achieve this,
diacritical marks would have to be synthesized
separately, as well as dots over i’s and the bottoms of
i’s. Partial character glyphs could also be useful in a
system that over-segments touching characters or to
recognize Arabic text by over-segmentation.

4 Experimental Results

We have applied the synthetic distortion technique to
train 14 neural classifiers: three English omnifont
classifiers, OCR-A font ASCII classifier, OCR-B digit
classifier, and two omnifont classifiers for each of these
languages: Thai, Lao, Burmese and Vietnamese. All of
the networks were trained successfully as measured on
the synthetic testing set and by visually inspecting their
performance. To compare the performance of a
network trained with synthetic data to the performance
that could be obtained with real data we have selected
two of the classifiers for comparison with an existing
classifier trained on real data.

The real data classifier was trained to recognize a set
of 72 characters: upper and lower case letters, digits
and the following special characters: $, %, &, *. This
classifier was trained with approximately 250000
characters, with 3000 to 4000 examples of each
character. This data set represents all of the real data
available for training at the time. The synthetic data
classifier was trained to recognize all 94 ASCII
characters and it was trained with 940000 characters -
10000 examples of each character. For each character,
samples were generated from 20 fonts at point sizes 6,
8, 10, 12 and 14. The names of the fonts used can be
provided upon request.

We believe that it is reasonable to compare these
classifiers, even though the synthetic data classifier was
presented with about 3 times more data, because this
reflects the ease of obtaining the synthetic data and thus
is an inherent advantage of synthetic data. We have also
constructed and tested a classifier to recognize all 94
ASCII characters as well as a set of 44 character pairs
that we found frequently segmented as a single glyph.
The synthetic data classifier was tested twice, once with
the calculation of upper case character height turned on
and once with this calculation turned off. With the
uppercase character height calculation turned off, the
LITRE system [2] calculated only the lowercase height
and set the uppercase height equal to the lowercase
height. This test was done to test the synthetic data
classifier with the same information that was used by
the real data classifier. In all, four tests were performed:

1. Real data classifier.

2. Synthetic data classifier,
lowercase.

uppercase set to

3. Synthetic data classifier, uppercase calculated.
4. Synthetic data classifier with character pairs.

The test was performed by running the OCR system
LITRE [2], currently being developed by Mitek, on a
set of 362 images from UW-II CD-ROM database [9].
The results are broken up into three parts: Journal 1
lists resuits for 165 images from journal articles that
have been photocopied once. Journal 2 lists results for
the same 165 images as Jowrnal I, except that they
were photocopied twice. Memo lists results for 32
images of office memorandums. The recognition results
were compared to the truth data supplied, using the
OCR evaluation program from UW-I CD-ROM [8].
The percentage correct was calculated with the
formula:

truth characters - # errors
truth characters

where errors include substitutions, insertions and
deletions.

As the real data and synthetic data classifiers were
trained to recognize different sets of characters, the
results were adjusted for the characters missing from
the real data classifier. The LITRE system [2] was
running with iterative segmentation turned on, with bi-
gram and error modeling postprocessing but without
lexicon postprocessing. The system was providing the
upper and lower case heights to the classifiers, with the
exception of test 2. The real data classifier in test 1 was
not using the lowercase height information. Table 1
shows the results of the experiments. It should be noted
that the performance reported does not represent the
number of characters correctly recognized by the
classifiers. Most of the errors are due to incorrect
segmentation. However, measuring the performance of

% correct =

317

classifiers on individual characters required = a
significant amount of effort, and we have compared the
classifiers by testing them in a full OCR system.
Moreover, the accuracy of the character pair classifier
must be measured in a full OCR system, as this
classifier is designed to compensate for OCR
segmentation errors.

Table 1: OCR accuracy of LITRE with selected
classifiers.

Synthetic
Real Upper = Upper | Synthetic
lower calc. Pair
Journal 1 86.8 95.1 93.1 92.5
Journal2 | 87.3 93.5 932 92.6
Memo 84.6 86.2 86.8 86.1
Total 87.0 94.1 92.9 92.3

The synthetic data classifiers outperformed the real
data classifier, even if the comparison is limited to the
character set of the real data classifier. Two
observations in the results are noted.

First, the synthetic data classifier performed better in
the test with uppercase calculation turned off. We have
examined the results and noticed that by turning off the
uppercase height calculation, better segmentation
results were obtained, resulting in more well segmented
characters and hence fewer recognition errors. The
recognition itself was actually better with uppercase
height available, but was overshadowed by the
segmentation errors.

The second observation is that the character pair
classifier did not outperform the ordinary synthetic data
classifier, even though it was superior in smaller tests.
Upon closer examination of the results we saw that the
character pair classifier actually matched a higher
number of characters correctly, but it also made more
insertion errors. The insertion errors were made mostly
in text areas severely mishandled by the segmentation
module, and unrecognizable by either of the two
classifiers. However, the character pair classifier tended
to produce more output characters in these situations,
thus losing its advantage in better quality of
recognition. This suggests that appropriate tuning of
LITRE's parameters can make the character pair
classifier the more accurate of the two.

S Summary

We have described an adaptation of Baird's image
defect model [11] for the purpose of synthesis of
distorted character images for training classifiers. We
have produced a number of classifiers using this
technique and tested two of them against an existing

classifier, trained with real data. We have shown that
the classifiers trained with synthetic data can
outperform classifiers trained with real data, and hence
that the image defect model is a sufficiently good
approximation of image defects for the purposes of
constructing character classifiers.

These results show that the defect model is applicable
to generation of synthetic images of machine print
characters to train a character classifier. As used
currently, our system is limited to synthesis of character
images from TrueType fonts. It cannot be easily used to
generate images of printer fonts not available as
TrueType fonts, such as dot-matrix or the chain or
drum printer fonts (fonts such as OCRA, E7B are
available as TrueType fonts). However, this system
could be extended to degrade not just perfect character
images rendered from a TrueType font, but any
scanned character images, including hand-printed
characters. This would allow the creation of a hybrid
data set, containing real characters with additional
synthetic distortions to further increase the size of the
training set. Such an increase of the training set would
result in a classifier more resistant to distortions and
less susceptible to overtraining. However, in the case of
hand-printed character sets, a small set will not be
helped by the defect model, as the variety of shapes of
letters cannot be increased synthetically. Still, the
accuracy of classifiers trained on hybrid data could be
increased this way.

The document image defect model could also be
coupled more tightly with the training process, by
synthesizing character images on the fly during
training. This way classifiers could be trained
effectively on infinite training sets.

References

[1] Y. Le Cun, et al, Handwritten digit recognition
with a back-propagation network, in Newral

Information Processing Systems, Dave
Touretzky, ed. (Morgan Kaufman, Denver 1989),
volume 2.

[21 M. Prussak, et al, LITRE: Language Independent
Text Recognition Engine, in Proc. of the 1995
Symposium on Document Image Understanding
Technology, Bowie, MD, Oct 1995, 213-221.

{3] S. Kahan, T. Pavlidis, H. S. Baird, On the
recognition of printed characters of any font and
size, in IEEE Transactions on Pattern Analysis
and Machine Intelligence, 9 (1987) 1029-1058.

[4] S. Mori, C. Y. Suen, K. Yamamoto, Historical
Review of OCR research and development, in
Proceedings of the IEEE, 80 (1992) 1029-1058.

{51 R. Vogt, Neural network recognition of machine-
printed characters, in Proc. USPS Advanced

318

[6]

(7

(8]

(9]

[10]

(1]

[12]

(13]

[14]

(15]

(16]

Technology Conference, November 1992, 715-
726.

Jonathan J. Hull, A database for handwritten text
recognition research, in IEEE Transactions on
Pattern Analysis and Machine Intelligence, 16
(1994) 550-554.

Standard Reference Data, National Institute of
Standards and Technology, NIST Test Data 1:
Binary Images of Hand-printed Segmented
Characters, Gaithersburg, MD, 1991.

I. T. Phillips, S. Chen, R. M. Haralick, English
document database standard, in Proc. Second
International Conference on Document Analysis
and Recognition, Tsukuba, Japan, October 1993,
315-318.

R. M. Haralick, et al, UW-II English/Japanese
Document Image Database, Seattle, Washington,
1995.

D. H. Kim, et al, Handwritten Korean character
image database PE92, in Proc. Second
International Conference on Document Analysis
and Recognition, Tsukuba, Japan, October 1993,
470-473.

H. S. Baird, Document image defect models, in
Structured Document Image Analysis, H. S.
Baird, H. Bunke and K. Yamamoto, eds.
(Springer-Verlag, New York, 1992), 546-556.

M. Bokser, K. Choy, Synthetic training for OCR,
in Proc. DIMUND Workshop on Page
Decomposition, Character Recognition, and
Data Standards, Harper’s Ferry, WV, 1993.

T. Kanungo, H. S. Baird, R. M. Haralick,
Validation and estimation of document
degradation models, in Proc. Fourth Symposium
on Document Analysis and Information
Retrieval, Las Vegas, NV, April 1995, 217-225.

G. Nagy, Validation of OCR data sets, in Proc.
Third Annual Symposium on Document Analysis
and Information Retrieval, Las Vegas, NV, April
1994, 127-135.

H. S. Baird, Document image defect models and
their uses, in Proc. Second International
Conference on Document Analysis and
Recognition, Tsukuba, Japan, Oct 1993.

R. G. Casey, Character segmentation in
document OCR: progress and hope, in Proc.
Fourth Annual Symposium on Document
Analysis and Information Retrieval, Las Vegas,
NV, April 1995, 13-40.

A Performance Evaluator for
Engineering-drawing Recognition Systems

Ihsin T. Phillips and Jisheng Liang!

Department of Computer Science/Software Engineering,
Seattle University, Seattle, Washington 98122
tDepartment of Electrical Engineering,
University of Washington, Seattle, Washington 98195

Systems which convert existing paper-based engineering diagrams into
electronic format are in demand and a few have been developed. However,
the performance of these systems is either unknown, or only reported in a
limited way by the system developers. An evaluation for these systems, or
their subsystems, would contribute to the advancement of the field. Re-
sponding to this needs, a dashed-line detection competition for developers of
dashed-line detection algorithms was proposed and took place during the first
IAPR Workshop on Graphics Recognition at Penn State University, in 1995.
A benchmark was developed and used in that competition. That benchmark
includes a performance evaluator and a software tool that automatically gen-
erates dashed-lines test images and the corresponding groundtruth.

In this paper, we discuss a performance evaluator for engineering-drawing
recognition systems on images that contain binary digital logic schematic dia-
grams. The evaluator accepts inputs of IGES files containing IGES primitives
of straight lines, circles, partial arcs of circles, and IGES label block objects.
Our evaluator takes two IGES files— the recognition algorithm’s output and
the corresponding groundtruth. First, the evaluator parses the two IGES files
to extract IGES entities (primitives and labeled objects) and the parameter
information of these entities.

To evaluate the primitives produced by the detection algorithm against

319

the primitives in the groundtruth file, we compute the matching score and
mark either match or non-match for each pair of primitives, one from the
algorithm and the other one from the groundtruth. Since three types of
primitives (lines, arcs, and circles) are allowed in our protocol, the evaluation
protocol and the matching criteria are designed differently for each of the
combinations. Our evaluator allows one-to-many matches on the primitives.

To evaluate the labeled block-objects produced by the detection algorithm
against the labeled block-objects in the corresponding groundtruth file, we
compute the union and the intersection of the areas of the two bounding boxes
corresponding to the pair of labeled objects. If the ratio of the intersection
and the union is less than 80 percent, we reject the match. If the primitives
(sub-components) of this pair of objects are given in both files, we perform
the primitive matching protocol on the two primitive lists. If less than 80
percent of the subcomponents match from one list to the other, we reject
the match. Finally, if the names of the labels of this pair are match, the two
objects are considered as a match, otherwise, we reject the match.

The results of our evaluator is a table of numbers which when weighted by
application specific weights can be summed to produce an overall score rel-
evant to the application. Although our evaluator accepts only limited IGES
primitives (straight lines, circles, arcs, and label block objects), nevertheless,
it is useful, since all straightforward digital logic diagrams use only a combi-
nation of these geometric elements. However, we are in the process of making
an extension of our protocol to include other IGES primitives.

We understand that IGES is only one of many possible graphical file for-
mats. We choose IGES file format because it is widely used and supported
in the computer graphics industry. It has the distinct advantages of being
standardized, non-proprietary, and having been designed from the beginning
as an exchange format, not merely intended for storage of drawings within
a single system. Users of our evaluator need only produce a standard IGES
output file compatible with the format described in the paper and the cor-
responding groundtruth of the test images. The groundtruthing protocol for
the preparation of groundtruth is also included in the paper. (Note that Har-
alick and Phillips’s group at the University of Washington recently released
a CDROM, UW-III, containing a collection of engineering drawing images.
The groundtruth for those images are all in IGES file formats.)

320

SRDI’s Interest Page

Computer Engineering, Information, Telecommunications, and Automation Division
SRI International, Menlo Park, California 94025

Jeff DeCurtins: decurtin@erg.sri.com
Greg Myers: myers@erg.sri.com

Prasanna Mulgaonkar: prasanna@erg.sri.com

1 Introduction

The ability to search digitized document images
for relevant information is a growing need in many
business and government applications. Conventional
approaches to this problem involve the use of
segmentation processes followed by recognition
processes to convert the pixel information into a
symbolic representation that can be manipulated.
However, such approaches have difficulty extracting
information from poor-quality documents or
documents with complex structure. SRI International
has several related research efforts underway that are
exploring the use of model-based or contextual
information that can compensate for the degradation-
induced information loss in complex documents. These
methods use shape information from entire words to
complement character recognition, lexicons organized
in domain-specific ways to enhance recognition, and
mformation combined from graphical and textual
modalities within a single document. Several individual
efforts currently underway are described below.

2 Key Word Spotting

With the advent of on-line access to very large
collections of document images, electronic
classification into areas of interest based on keyword
content has become possible. An alternative to the use
of OCR is the use of whole word shape recognition
applied directly to the image. SRI has developed a
system, called Scribble, based on this alternative.
Testing has demonstrated that it is both faster and more
robust in the face of poor image quality than OCR.
Extensions being explored included recognition of
Cyrillic, Arabic, and handwritten text and the detection
of text in video streams.

321

3 Mail-Piece Address Reading

SRI has been developing systems to locate and
read addresses on machine-printed mail pieces for the
U.S. Postal Service. Machine-printed mail pieces carry
on their covers not only the destination address we wish
to find, but also the return address, a postmark, and
often one or more advertisements. Qur approach
consists of two processing steps: address location and
address recognition. Our approach to address location
relies on the conventions of address structure to
distinguish the address from other printing on the mail
piece: these conventions include left justification as
well as the length, height, and spacing of the text lines.
Our approach to address recognition uses as a
subsystem as an off-the-shelf OCR software package
modified for the environment of scanned letter mail,
which, as we have noted, includes a significant amount
of poorly printed text and interfering background
patterns. To correctly interpret the character recognition
results, SRI took advantage of the logical relationships
among the words’ addresses, to use a method based on
hypothesis generation and verification.

4 Information Extraction from Maps

Because complex color topographic maps contain
several layers of information that overlap substantially
(often within a single color plane), geometrically
segmenting raster-scanned map image data into distinct
graphical objects and text regions is difficult. SRI has
been using verification-based recognition approaches
that use contextual knowledge and constraints to
formulate and then verify interpretation hypotheses.
Because these approaches are based on the same
principals as those used to recognize occluded objects
in computer vision domains, they can operate
successfully amid extraneous graphic information, even
where the graphical object of interest is touching or
overlapping other information. SRI has demonstrated
the extraction of roads, symbols, and text from USGS
maps.

Participant Interest Summary

Michael Cannon, Judy Hochberg, Patrick Kelly, and James White
Computer Research & Applications Group
Los Alamos, National Laboratory
Los Alamos, NM 87545

Our interest in document processing covers the entire document processing stream, starting
with compression of document images, extending through optical character recognition to
create textual documents, and ending with information extraction from textual documents. Our
program draws on Laboratory expertise over several technical areas and organizations. It has
applications in areas of national concern such as document declassification and archiving, as
well as business applications.

Our past and current sponsors are government organizations such as the CIA,DOD, FBI, and
DOE. In particular, the concerns we address are part of the DOE efforts in declassifying 337
million pages of documents. They also apply to archiving projects such as the Laboratory's
Nuclear Weapons Archival Program (NWAP). We are active in the field of language
identification from machine printed and handwritten documents.

Some of our specific research foci are the following:

e Our work on language identification has led to a successfully completed project to
recognize the script of a machine printed document. Our method successfully differentiates
between thirteen scripts, including Cyrillic, Roman, Arabic, Japanese, and Korean. We are
currently examining methods to determine the script and/or language of handwritten
documents.

e Other work on document image processing focuses on automatic assessment of document
image quality. Quality assessment is a necessity when analyzing archives of documents
that have been mimeographed or poorly typewritten, photocopied several times, and/or
faxed. The quality assessment indicates how a document image might be best restored and
also can be used to predict OCR accuracy.

e When document images are converted to textual documents via OCR, the resulting text
contains many incorrect characters. This makes standard word-based information
extraction techniques, such as keyword spotting, unreliable. Our work in n-gram analysis
provides a rapid and accurate information extraction technique that is relatively robust in
the face of such noisy text.

» From the DOE we have obtained some initial funding to categorize documents with neural
networks. The categorization will lead to more efficient processing of documents by
classification experts, either human or computer based.

322

Foreign Languages and Document Quality Multimedia

Image-Based Indexing

Applications

